
FILE	
 SYSTEM	
 IMPLEMENTATION	
 IN	
 XINU	

	

	

	

Introduction:	

	

The	
 purpose	
 of	
 this	
 document	
 is	
 to	
 outline	
 the	
 technical	
 design	
 of	
 the	
 File	
 system	

implementation	
 in	
 XINU	
 operating	
 system.	

Design	
 Considerations:	

	

• Establish	
 a	
 basic	
 file	
 system	
 with	
 memory	
 based	
 backing	
 restore.	

• The	
 implementation	
 is	
 a	
 byte-­‐stream	
 file	
 interface	
 and	
 we	
 provide	
 the	
 following	
 file	
 and	

directory	
 functions	
 to	
 maintain	
 the	
 abstraction:	

! fopen:	
 Opens	
 an	
 existing	
 file	
 and	
 brings	
 it	
 into	
 memory	
 so	
 that	
 the	
 processes	
 can	

use	
 it.	
 When	
 a	
 process	
 calls	
 open,	
 it	
 should	
 locate	
 the	
 file	
 the	
 process	
 identifies	

and	
 return	
 a	
 file	
 descriptor,	
 which	
 is	
 the	
 process's	
 means	
 of	
 identifying	
 a	
 file.	
 	

! fclose:	
 Closes	
 or	
 release	
 a	
 file	
 descriptor	
 from	
 use	
 and	
 make	
 the	
 file	
 inaccessible	

until	
 another	
 open	
 call	
 is	
 made.	

! fread:	
 Read	
 n	
 bytes	
 out	
 of	
 a	
 file	
 and	
 into	
 buffer	
 space	
 in	
 a	
 process's	
 memory.	

When	
 a	
 read	
 call	
 is	
 made,	
 it	
 should	
 start	
 where	
 the	
 previous	
 read	
 left	
 off.	
 To	
 do	

this,	
 we	
 keep	
 a	
 seek	
 pointer	
 associated	
 with	
 the	
 file.	
 	

! fwrite:	
 Write	
 should	
 let	
 us	
 write	
 n	
 bytes	
 from	
 a	
 process's	
 buffer	
 memory	
 into	
 a	

file.	
 If	
 a	
 write	
 call	
 would	
 go	
 past	
 the	
 end	
 of	
 a	
 file,	
 the	
 file	
 should	
 be	
 made	
 larger	

to	
 accommodate	
 the	
 new	
 data.	
 The	
 write	
 call	
 should	
 also	
 use	
 the	
 seek	
 pointer.	

New	
 data	
 written	
 into	
 a	
 file	
 should	
 start	
 at	
 the	
 seek	
 pointer,	
 and	
 when	
 write	
 is	

complete	
 the	
 seek	
 pointer	
 should	
 be	
 updated.	

! fseek:	
 Allows	
 to	
 move	
 the	
 seek	
 pointer	
 in	
 a	
 file,	
 allowing	
 us	
 to	
 choose	
 which	
 part	

of	
 the	
 stream	
 we	
 read	
 and	
 write	
 to.	

! fcreat:	
 It	
 is	
 used	
 to	
 create	
 a	
 new	
 file.	

Implementation	
 details:	

	

" int	
 fopen	
 (char	
 *filename,	
 int	
 flags);	

fopen:	
 It	
 finds	
 the	
 inode	
 corresponding	
 to	
 the	
 filename	
 and	
 since	
 the	
 file	
 is	
 open	

it	
 is,	
 loaded	
 into	
 memory	
 into	
 the	
 inode	
 table.	
 A	
 new	
 open	
 file	
 table	
 entry	
 has	

been	
 created	
 to	
 refer	
 to	
 this	
 file.	
 The	
 calling	
 process	
 has	
 allocated	
 a	
 file	
 table	

entry	
 to	
 point	
 to	
 the	
 open	
 file	
 table	
 entry.	
 The	
 index	
 of	
 the	
 file	
 table	
 entry	
 is	

returned	
 to	
 the	
 process.	

	

" int	
 fclose(int	
 fd);	

	

fclose:	
 It	
 uses	
 the	
 file	
 descriptor	
 from	
 the	
 system	
 call	
 and	
 the	
 file	
 table	
 to	
 find	

the	
 open	
 file	
 table	
 entry	
 for	
 this	
 file.	
 When	
 we	
 close	
 the	
 file,	
 the	
 inode	
 is	

removed	
 from	
 the	
 table	
 and	
 written	
 back	
 to	
 disk.	

	

" int	
 fcreat(char	
 *filename,	
 int	
 mode);	

fcreat:	
 It	
 allocates	
 a	
 free	
 inode	
 to	
 the	
 file	
 and	
 any	
 directories	
 that	
 need	
 updating	

are	
 dealt	
 with	
 in	
 addition	
 a	
 new	
 open	
 file	
 table	
 entry	
 is	
 created	
 to	
 refer	
 to	
 this	

file.	
 The	
 index	
 of	
 the	
 file	
 table	
 entry	
 is	
 returned	
 to	
 the	
 process.	

" int	
 fseek(int	
 fd,	
 int	
 offset);	

	

fseek:	
 It	
 finds	
 the	
 open	
 file	
 table	
 and	
 updates	
 the	
 seek	
 pointer	
 to	
 the	
 value	

specified.	

	

" int	
 fread(int	
 fd,	
 void	
 *buf,	
 int	
 nbytes);	

	
 	
 	
 	

fread:	
 It	
 uses	
 the	
 open	
 file	
 table	
 to	
 find	
 the	
 inode	
 referred	
 to.	
 It	
 then	

reads	
 n	
 bytes	
 starting	
 from	
 the	
 seek	
 pointer	
 into	
 the	
 process	
 buffer	
 memory,	
 and	

updates	
 the	
 seek	
 pointer.	
 If	
 the	
 seek	
 pointer	
 is	
 at	
 the	
 end	
 of	
 the	
 file,	
 EOF	
 is	

returned	
 to	
 the	
 process.	

	

" int	
 fwrite(int	
 fd,	
 void	
 *buf,	
 int	
 nbytes);	

	

fwrite:	
 It	
 works	
 similar	
 to	
 read	
 and	
 if	
 write	
 proceeds	
 past	
 the	
 end	
 of	
 the	
 file,	

additional	
 blocks	
 are	
 found	
 in	
 a	
 list	
 of	
 free	
 blocks	
 and	
 added	
 to	
 the	
 inode	
 address	

entries.	

	

Inode	
 structure:	

	

	
 	
 	
 struct	
 inode	
 	

	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 int	
 id;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 short	
 int	
 type;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 short	
 int	
 nlink;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 int	
 device;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 int	
 size;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 int	
 blocks[INODEBLOCKS];	

};	
 	

	

	

File	
 table	
 structure:	

	

	
 	
 	
 struct	
 filetable	
 	

	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 int	
 state;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 int	
 fileptr;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 struct	
 dirent	
 *de;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 struct	
 inode	
 in;	

};	

	

Directory	
 table	
 structure:	

	

	
 	
 	
 struct	
 directory	
 {	

	
 	
 	
 	
 	
 int	
 numentries;	

	
 	
 	
 	
 	
 struct	
 dirent	
 entry[DIRECTORY_SIZE];	

};	

	

Future	
 enhancements:	

	

• Implementing	
 with	
 directory	
 hierarchy.	

• Addressing	
 Implementation	
 using	
 double-­‐indirect	
 and	
 triple-­‐indirect	
 addressing.	

	

Output	

$xsh:fstest	

Input	
 would	
 be	
 welcome	
 to	
 the	
 world	
 of	
 Xinu	
 ,fread	
 would	
 read	
 that	
 and	
 writes	
 it	
 into	
 a	
 buffer	

and	
 then	
 we	
 print	
 it.	

	

References:	

	

1.Text	
 book	
 Xinu	
 –	
 Operating	
 system	
 Design	

2.http://www.cs.ucsb.edu/cs170/notes	

3.Wikipedia	

	

