
FUTURES2	
  IMPLEMENTATION	
  IN	
  XINU	
  
	
  
	
  
Introduction:	
  
	
  
The	
  design	
  document	
  provides	
  an	
  overview	
  of	
  the	
  futures	
  concept	
  part	
  of	
  the	
  new	
  C++	
  standard.	
  The	
  futures	
  variable	
  is	
  
a	
  placeholder	
  for	
  an	
  eventual	
  output	
  generated	
  by	
  a	
  function	
  called	
  asynchronously.	
  
	
  
Design	
  Considerations	
  
	
  

• The	
   program	
   has	
   an	
   asynch()	
   function	
   implemented	
   as	
   a	
   system	
   call,	
   which	
   is	
   used	
   to	
   call	
   a	
   function	
  
asynchronously	
   in	
   our	
   case	
   we	
   call	
   function	
   int	
   addInt()	
   which	
   adds	
   two	
   integers.	
   The	
   output	
   of	
   the	
  
asynchronous	
  function	
  is	
  used	
  to	
  set	
  future	
  variable,	
  asynch()	
  uses	
  	
  future_set()	
  within	
  its	
  implementation	
  to	
  set	
  
the	
  value	
  of	
  the	
  future	
  variable.	
  

• The	
   program	
   has	
   a	
   cont()	
   function	
   implemented	
   as	
   a	
   system	
   call,	
   which	
   uses	
   future_get	
   within	
   its	
  
implementation	
  and	
  it,	
  is	
  used	
  to	
  query	
  the	
  future	
  variable	
  value.	
  

• The	
  future	
  structure	
  has	
  two	
  queue’s	
  implemented	
  which	
  are	
  used	
  for	
  queuing	
  successive	
  future	
  values	
  as	
  well	
  
to	
  queue	
  processes	
  waiting	
  on	
  a	
  full	
  future	
  in	
  case	
  of	
  shared	
  future.	
  	
  

	
  
Implements	
  the	
  following	
  future	
  types:	
  

• 1)	
  NORMAL	
  FUTURE	
  -­‐	
  The	
  future	
  variable	
  is	
  set	
  once	
  and	
  queried	
  once	
  and	
  a	
  successive	
  attempt	
  to	
  set	
  or	
  query	
  
the	
  future	
  fails	
  i.e.	
  Project	
  Futures1	
  implementation.	
  

• 2)	
  SHARED	
  FUTURE	
  -­‐	
  The	
  future	
  variable	
  is	
  set	
  once	
  and	
  can	
  be	
  queried	
  multiple	
  times,	
  any	
  attempt	
  to	
  set	
  the	
  
future	
  for	
  the	
  second	
  time	
  results	
  in	
  failure.	
  

• 3)	
  QUEUE	
  FUTURE	
   -­‐	
  The	
  future	
  variable	
  can	
  be	
  set	
  and	
  queried	
  multiple	
  times.	
  The	
  successive	
   future	
  variable	
  
values	
  on	
  a	
  full	
  future	
  will	
  be	
  queued	
  to	
  produce	
  a	
  subsequent	
  value	
  of	
  the	
  future.	
  

	
  
Implementation	
  Details	
  
	
  

• Header	
  file	
  <futures.h>	
  contains	
  function	
  prototype	
  and	
  the	
  structure	
  corresponding	
  to	
  the	
  future	
  variable.	
  
	
  

#define	
  FT_NORMAL	
  0	
  
#define	
  FT_SHARED	
  1	
  
#define	
  FT_QUEUE	
  2	
  
typedef	
  struct	
  futentries	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  /*future	
  table	
  entry*/	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  {	
  
char	
  state;	
  /*state	
  of	
  the	
  future	
  which	
  can	
  be	
  NORMAL	
  FUTURE,	
  SHARED	
  FUTURE	
  or	
  QUEUE	
  FUTURE*/	
  

	
   int	
  count;	
  	
  	
  	
  	
  	
  /*keep	
  track	
  of	
  no.of	
  processes	
  which	
  either	
  try	
  to	
  set	
  or	
  get	
  the	
  future	
  */	
  
	
   int	
  vflag;	
  	
  	
  	
  	
  	
  	
  /*	
  to	
  check	
  if	
  the	
  future	
  is	
  blocked	
  */	
  
	
   int	
  flag;	
  	
   	
  /*flag	
  to	
  check	
  if	
  value	
  is	
  set	
  for	
  the	
  future*/	
  
	
   int	
  pqueue[10];	
  	
  /*process	
  id	
  waiting	
  for	
  the	
  future*/	
  
	
   int	
  vqueue[10];	
  	
  /*queued	
  future	
  values*/	
  
	
   int	
  front1,	
  front2,	
  rear1,	
  rear2;	
  /*flags	
  to	
  keep	
  track	
  of	
  insertions	
  and	
  deletions	
  in	
  the	
  queue*/	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  }	
  	
  futur;	
  	
  	
  	
   	
   	
  
	
  
	
  

	
  
• C	
  file	
  futalloc.c	
  to	
  allocate	
  the	
  future	
  variable.	
  	
  

	
  
! The	
  function	
  futalloc	
  ()	
  allocates	
  the	
  memory	
  to	
  the	
  future,	
  sets	
  the	
  flag	
  (type	
  of	
  future)	
  and	
  returns	
  the	
  

address	
  of	
  the	
  allocated	
  future.	
  
Prototype: futur*	
  future_alloc(int	
  future_flags);	
  

	
  



	
  
• syscall	
  future_set(futur	
  *,	
  int	
  )	
  

	
  
! The	
  function	
  is	
  implemented	
  as	
  a	
  system	
  call	
  and	
  it	
  is	
  used	
  to	
  set	
  the	
  data	
  of	
  the	
  future.	
  

	
  
• syscall	
  future_get(futur	
  *,	
  int	
  *)	
  

	
  
! The	
  function	
  is	
  implemented	
  as	
  a	
  system	
  call	
  and	
  it	
  is	
  used	
  to	
  get	
  the	
  data	
  stored	
  in	
  future.	
  

	
  
• syscall	
  futures_free(futur	
  *)	
  

	
  
! The	
  function	
  is	
  implemented	
  as	
  a	
  system	
  call	
  to	
  free	
  up	
  the	
  future	
  variable.	
  
	
  

• syscall	
  asynch(futur	
  *f,	
  int	
  (*funptr	
  )(int,	
  int),int	
  x,	
  int	
  y)	
  /*	
  will	
  run	
  and	
  set	
  the	
  future	
  */	
  
	
  

! The	
  function	
  is	
  implemented	
  as	
  a	
  system	
  call	
  and	
  it	
  is	
  used	
  to	
  call	
  some	
  function	
  asynchronously	
  in	
  our	
  
case	
  it	
  is	
  the	
  function	
  int	
  addInt()	
  (function	
  to	
  add	
  two	
  integers).	
  The	
  result	
  produced	
  from	
  the	
  
asynchronously	
  called	
  function	
  is	
  used	
  to	
  set	
  the	
  future	
  variable	
  value.	
  
	
  

• syscall	
  cont(futur	
  *f,	
  void	
  (*funptr)(futur	
  *))	
  	
  /*	
  will	
  start	
  the	
  thread	
  when	
  the	
  future	
  is	
  set.	
  */	
  
! This	
  function	
  is	
  implemented	
  as	
  a	
  system	
  call	
  and	
  it	
  in	
  turns	
  implements	
  the	
  consumer	
  function	
  and	
  is	
  

used	
  to	
  query	
  the	
  future	
  variable	
  value.	
  
	
  

	
  
Input	
  snapshot	
  
	
  
	
  

futur	
  *f1,*f2,*f3;	
  

	
  

/*	
  Normal	
  Future*/	
  

f1=future_alloc(0);	
  

asynch(f1,addInt,5,6);	
  

cont(f1,fconsumer);	
  

cont(f1,fconsumer);	
   	
   //process	
  gets	
  blocked	
  	
  

	
  

/*Shared	
  future	
  */	
  

f2=future_alloc(1);	
  

asynch(f2,addInt,1,2);	
  

cont(f2,fconsumer);	
   	
   //prints	
  3	
  

cont(f2,fconsumer);	
   	
   //prints	
  3	
  

	
  

	
  



/*Queued	
  Future*/	
  

f3=future_alloc(2);	
  

cont(f3,fconsumer);	
   	
   //prints	
  5	
  

asynch(f3,addInt,2,3);	
   	
  

asynch(f3,addInt,20,30);	
  

cont(f3,fconsumer);	
   	
   //prints	
  50	
  

cont(f3,fconsumer);	
   	
   //prints	
  80	
  

asynch(f3,addInt,50,30);	
  

	
  

Output	
  Snapshot	
  

xsh$	
  fut	
  

Trying	
  to	
  access	
  blocked	
  future:	
  Process	
  cons	
  blocked	
  

The	
  sum	
  is	
  11	
  

The	
  sum	
  is	
  3	
  

The	
  sum	
  is	
  3	
  

The	
  sum	
  is	
  5	
  

The	
  sum	
  is	
  50	
  

The	
  sum	
  is	
  80	
  

	
  

	
  
	
  
References	
  
	
  
Wikipedia,	
  CPP	
  reference,	
  Stack-­‐Overflow,	
  Xinu	
  Approach-­‐Linksys	
  Edition	
  Douglas	
  Comer	
  

	
  
	
  
	
  

	
  
	
  

	
  


